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1. SUMMARY 
Our work in this area has involved two distinct efforts: the first addresses the analysis of iterative 
channel estimation and multiuser detection in multipath DS-CDMA channels [1], and the second 
addresses the issue of energy efficiency in multi-hop CDMA networks [2].  

2. INTRODUCTION  
Multiuser detection refers to the data demodulation in multiple-access communication networks. 
It is a key technology in the development of high-capacity wireless communications and sensor 
networks. This study was concerned with multiuser detection in networks with very large 
numbers of nodes, i.e., very large scale multiuser detection. Our work has focused on two aspects 
of this problem. One of these is in establishing effective methods of analysis for multiuser 
receivers that iterate between multiuser detection (and channel decoding) and channel estimation 
[1]. Channel estimation is necessary in wireless receivers because of the dynamic fading that 
characterizes wireless communication channels.  Although such iterative receivers have been 
proposed before, their analysis (and thus their effectiveness) has been an open question.  The 
second aspect of this problem is that of the effects of multiuser detection on the energy efficiency 
of multi-hop networks [2], which are of considerable interest in a variety of applications of 
interest to the Air Force. Energy efficiency is often a primary consideration in design and 
deployment, and multiuser detection can have considerable effects on this efficiency. The 
purpose of this work is to develop methods that can be used to characterize these effects in 
support of design criteria for the such networks.  

3. METHODS, ASSUMPTIONS AND PROCEDURES  
This work is described in detail in the two papers [1, 2], copies of which are attached as 
Appendices. Generally speaking the primary assumption is that of a direct-sequence code-
division multiple-access (DS-CDMA) network with a very large number of nodes.  The principal 
analytical method used to examine the very large-scale case, is the large-system limit of 
DSCDMA systems, in which the spreading gain and the number of nodes both increase without 
bound while their ratio (the “system load”) remains constant.  This analytical device allows for 
closed-form analysis in both of the problems addressed. To analyze the iterative channel 
estimation and multiuser detection receiver in [1] the main additional techniques are those used 
to study the convergence of iterative algorithm. To study the energy efficiency of multi-hop 
networks in [2] a game-theoretic approach is used, in which the terminals in the network work 
are view as “economic” agents competing for radio resources to transmit their messages as 
efficiently as possible (i.e.,, with maximal  bits transmitted successfully per joule of battery 
energy). 
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4. RESULTS AND DISCUSSION  
The results are described in detail in the accompanying publications [1, 2].  In the problem of 
iterative channel estimation and multiuser detection of [1], the results are in the form of 
characterization of the conditions (in terms of system load and SNR) under which the iterative 
methods converge, and the resulting performance.  In the problem of energy efficiency in multi-
hop networks of [2], the results are in the form of the energy efficiency per node (bits-per-joule) 
as a function of the type of multiuser detector used by the terminals.  

5. CONCLUSIONS  
For detailed conclusions, please see the accompanying publications, [1,2], in the appendix.  
Briefly, it is seen in [1] that iteration can substantially improve upon the traditional 
(noniterative) methods of multiuser receiver implementation.  In [2], it is seen that the use of 
multiuser detection can be a major determinant in the energy efficiency of multi-hop multiuser 
systems.  

APPENDIXES  
 
[1] H. Li, S. Betz and H. V. Poor, “Performance Analysis of Iterative Channel Estimation and Multiuser 
Detection in Multipath DS-CDMA Channels,” IEEE Transactions on Signal Processing, accepted for 
publication. [Originally submitted December 14, 2005; revision submitted March 13, 2006; accepted 
August 15, 2006.]  

[2] S. Betz and H. V. Poor, “Energy Efficiency in Multi-hop CDMA Networks: A Game Theoretic 
Analysis,”  (invited paper). Proceedings of the Workshop on Multi-Layer Modelling and Design of Multi-
Hop Wireless Networks (MLMD’06), Minneapolis, MN, July 12 - 15, 2006.  
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Performance Analysis of Iterative Channel

Estimation and Multiuser Detection in Multipath

DS-CDMA Channels

Husheng Li, Sharon M. Betz and H. Vincent Poor

Abstract

This paper examines the performance of decision feedback based iterative channel estimation and multiuser de-

tection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit ex-

pressions describing the performance of channel estimation and parallel interference cancellation based multiuser

detection are developed. These results are then combined to characterize the evolution of the performance of a system

that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for conver-

gence of this system to a unique fixed point are developed.

I. INTRODUCTION

Direct sequence code division multiple-access (DS-CDMA) has been selected as the fundamental sig-

naling technique for third generation (3G) wireless communication systems, due to its advantages of soft

user capacity limit and inherent frequency diversity. However, it suffers from multiple-access interference

(MAI) caused by the non-orthogonality of spreading codes, particularly for heavily loaded systems. There-

fore, techniques for mitigating the MAI, namely multiuser detection, have been the subject of an intensive

research effort over the past two decades. It is well known that multiuser detection can substantially sup-

press MAI, thus improving system performance. Maximum likelihood (ML) multiuser detection [28] was

proposed in the early 1980s, and achieves the optimal performance at the cost of prohibitive computational
Husheng Li is with Qualcomm Inc., San Diego, CA, 92121, USA (email: hushengl@qualcomm.com). Sharon M. Betz is with Department of

Electrical Engineering, Princeton University, Princeton, NJ 08544, USA (email: sbetz@princeton.edu). H. Vincent Poor is with Department of

Electrical Engineering, Princeton University, Princeton, NJ 08544, USA (email: poor@princeton.edu). This research was supported by the Air

Force Research Laboratory under Cooperative Agreement No. FA8750-05-2-01 92.
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cost when the number of users is large. For practical implementation, suboptimal algorithms, such as the

linear minimum mean square error (LMMSE) detector [21] or decorrelator [29], allow a tradeoff between

complexity and performance. It should be noted that the technique of multiuser detection is being applied in

existing CDMA systems, such as EV-DO Revision A systems [12].

In recent years, the turbo principle, namely the iterative exchange of soft information among different

blocks in a communication system to improve the system performance, has been applied to combine mul-

tiuser detection with channel decoding [1][22][24][26][27][31]. In such turbo multiuser detectors, the out-

puts of channel decoders are fed back to the multiuser detector, thus enhancing the performance iteratively.

Turbo multiuser detection based on the maximum a posteriori probability (MAP) detection and decoding

criterion has been proposed in [30][31] together with a lower complexity technique based on interference

cancellation and LMMSE filtering. Further simplification is obtained by applying parallel interference can-

cellation (PIC) [1] for multiuser detection, where the decisions of the decoders are directly subtracted from

the original signal to cancel the MAI.

Practical wireless communication systems usually experience fading channels, whose state information

is unknown to the receiver. Thus practical systems need to consider detection and decoding with uncertain

channel state information. In the context of short code CDMA systems, blind multiuser detection can be

accomplished without explicit channel estimation by using subspace and other techniques [32]. An alter-

native receiver structure adopts an explicit channel estimation block and carries out the decoding with the

corresponding channel estimate. In systems without decision feedback, the channel estimation block is cas-

caded with the decoder and operates as a front end for the subsequent blocks. With such a receiver structure,

the channel estimates can be obtained with training symbols [6] or with blind estimation algorithms [33].

Explicit expressions for the performance of such channel estimation schemes are given in [17] and the cor-

responding impact on multiuser detection is discussed in the large system limit in [9] and [18]. In systems

with decision feedback, the decisions of the decoder are fed back to the channel estimator to enhance its

performance. In such systems, the channel estimator and the decoder can operate either simultaneously [25]

or successively [7] [13] [23]. An example of the former strategy applied to ML sequence detection in uncer-

tain environments is proposed in [25]; called per-survivor processing, tentative decisions are immediately

fed back to the channel estimation algorithm and the corresponding estimates are used for the detection

of future symbols. In the latter strategy, the decisions are fed back only when the entire current decoding
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procedure is finished. For example, in [13], an expectation maximization (EM) channel estimation algo-

rithm, combined with successive interference cancellation, is proposed. Joint channel estimation and data

detection algorithms for uncoded single-antenna and multiple-antenna systems are discussed in [8] and [7],

respectively. In channel coded systems, iteration can achieve better performance when the turbo principle is

applied, due to the redundancy introduced by the code structure. In [23], an iterative algorithm is proposed

and analyzed for channel estimation and decoding of low-density parity-check (LDPC) coded quadrature

amplitude modulation (QAM) systems.

In this paper, we consider channel-coded CDMA systems operating over multipath fading channels whose

channel state information is unknown to the receiver. To demodulate and decode such systems, we apply

the turbo principle to both channel estimation and multiuser detection. As shown in Figure 1, we consider

a receiver that feeds back decisions from channel decoders to both an ML channel estimator and a PIC

multiuser detector. The iteration is initialized with training symbol based channel estimation and a non-

iterative multiuser detection. The receiver structure is similar to those proposed in [2][15][20]. However,

this paper is focused mainly on the performance analysis of such structures using semi-analytic methods. We

analyze the contributions to the variance of the channel estimation error due to noise and decision feedback

error, and the variance of the residual MAI after PIC. We then use this analysis to describe the decoding

process as an iterative mapping. We also propose conditions assuring convergence of this iterative mapping

to a unique fixed point. We further compute the asymptotic multiuser efficiency (AME) [29] of this overall

system, under some mild assumptions on the channel decoders. It should be noted that the analysis in this

paper is based on large sample and large system analysis.

The remainder of this paper is organized as follows. Section II introduces the signal model and the chan-

nel decoder used in our analysis. The performance analyses of ML channel estimation and PIC multiuser

detection are given in Section III and Section IV, respectively. Based on these results, the corresponding

iterative mapping is described and analyzed in Section V. Numerical results and conclusions are given in

Section VI and Section VII, respectively. The notations used in this paper are explained as follows.

• Throughout this paper, if no special note is given, we denote vectors with small letters in bold fonts,

matrices with capital letters in bold fonts and scalars with non-bold fonts.

• For any variable X , we denote the corresponding estimate from the decision feedback by X̂ and the

corresponding error X − X̂ by δX .
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• Superscript T denotes transposition and superscript H denotes conjugate transposition.

• I denotes the identity matrix.

• "x# denotes the smallest integer larger than or equal to x.

• mod(i, j) denotes the modulo of i with respect to j, with the convention of mod(i, i) = i.

• For a matrixAm×n, ‖A‖F !
√∑m

i=1

∑n
j=1 A2

ij is the Frobenius norm ofA.

II. SIGNAL MODEL

A. Signal Model

We consider a synchronous uplink long code (aperiodic) DS-CDMA system, with identical channel cod-

ing, binary phase-shift keying (BPSK) modulation, K active users, spreading gain N , system load β = K
N ,

and identical transmission rates for all users. The transmitted symbols experience multipath fading. We

adopt a block fading model and denote by M the coherence time, measured in the number of symbol peri-

ods, over which the channel is stationary. Within a coherence period, the chip matched filter output of the

receiver at symbol period t can be collected into an N -vector given by

r(t) =
K∑

k=1

bk(t)
L∑

l=1

aklskl(t) + n(t), t = 1, 2, ...M, (1)

whereL denotes the number of resolvable paths per user, bk(t) denotes the channel coded binary symbols, akl

denotes the channel gain of the l-th path of user k, skl(t) denotes the binary spreading code with ‖skl(t)‖ = 1

received from user k along path l at time t and n(t) is an N -vector of independent and identical distributed

(i.i.d.) circularly symmetric complex Gaussian (CSCG) 1noise variables with (normalized) variance σ2
n. It

should be noted that although the assumption of synchronicity is valid in time division duplexing (TDD)

systems, it does not hold for many frequency division duplexing (FDD) systems. However, as it will be

shown, the results from the analysis of synchronous systems are also reasonably valid, though not exactly

the same, in the case of asynchronous systems.

For the system model, we have the following assumptions.

Assumption II.1: The channel gains {akl} are independently CSCG distributed with zero means and vari-

ances 1
L . We consider only the case of large L, which implies that

∑L
l=1 |akl|2 ≈ 1, k = 1, ..., K; thus all

users achieve the same performance with maximal ratio combining (MRC).
1A complex random variable is CSCG distributed if its real and imaginary parts are mutually independent Gaussian random variables with

zero mean and identical variance.
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Assumption II.2: We ignore intersymbol interference (ISI) and assume that the spreading codes received

along different paths of a given user are mutually independent (independent model).

Assumption II.3: Based on Assumption II.2, the crosscorrelations ρklmn(t) ! skl(t)T smn(t) (note that

ρklkl(t) = 1) satisfy

• E {ρklmn(t)} = 0, if (k, l) &= (m,n);

• E {ρ2
klmn(t)} = 1

N , if (k, l) &= (m,n);

• E {ρklmn(t)ρpqrs(t)} = 0, if (k, l, m, n) &= (p, q, r, s).

The above assumptions simplify the performance analysis substantially. Moreover, these assumptions are

reasonable for practical systems due to the following reasons:

• Assumption II.1 is based on the fact that more propagation paths are resolvable in CDMA systems

than narrow band systems, particularly in environments with abundant scattering (e.g., indoor environ-

ment). With this assumption, we ignore the impact of the fluctuation of received power incurred by the

multipath fading, and consider only the impairment caused by the channel estimation error.

• Assumption II.2 is unrealistic since these sequences are shifted versions of each other (shifted model).

However, the accuracy of the results dependent upon this assumption is validated with numerical results

in Section VI and asymptotic analysis given in Appendix 1.

B. Receiver Structure

The structure of receiver is shown in Figure 1. The channel coefficients are estimated in the channel

estimator, which operates in a ‘semi-blind’ way. Training symbols are available to obtain an initial estimate

in the first iteration. In the further iterations the information symbol decisions from channel decoders are

assumed to be correct. Then, both the training symbols and fed back decisions are considered as training

symbols and used for ML channel estimation. A multiuser detector is used to mitigate the MAI and its

outputs are de-interleaved and decoded in the channel decoder. In the multiuser detector, we use the LMMSE

algorithm in the first iteration and the PIC algorithm with the aid of hard decision feedback in the succeeding

iterations. We follow the standard procedure in turbo multiuser detection [1][13][22][30] to reconstruct the

channel symbols from the channel decoder output. Then these channel symbol estimates are interleaved and

fed back to the multiuser detector and channel estimator to enhance the performance iteratively.

We denote by b̂k(t) the estimated binary channel symbol of user k at symbol period t that is fed back from

the channel decoder. For simplicity, we use hard decision feedback and denote the feedback symbol error

7



rate by Pe. The decision feedback error is denoted by δbk(t) ! bk(t)− b̂k(t). Supposing that both bk(t) and

δbk(t) are symmetrically distributed, it is easy to check that

• E {δbk(t)} = 0;

• E {bk(t)δbk(t)} = 2Pe;

• E {δb2
k(t)} = 4Pe.

• E {δbk(m)δbl(n)} = 0, when (k, m) &= (l, n).

It should be noted that, in practical systems, soft decision feedback will achieve better performance than

hard decision feedback. However, the performance of channel estimation with soft decision feedback is

determined by both the first and second moments of the decision feedback error [17]. Thus the corresponding

analysis of performance evolution is more complicated than the case of hard decision feedback. Therefore,

we adopt hard decision feedback in order to simplify the system performance analysis.

For the decision feedback from channel decoders, we have the following reasonable assumption, which

simplifies the analysis and is also used in [1].

Assumption II.4: The codeword length is assumed to be large enough so that the transmitted symbols are

coded over many coherence periods. The decision feedbacks
{

b̂k(t)
}
are mutually independent for different

k or t.

III. PERFORMANCE ANALYSIS OF CHANNEL ESTIMATION

In this section, we discuss the performance of channel estimation. First, we explain the training symbol

based ML channel estimation algorithm that is used in the first iteration. Then, we consider the estimation

of the channel coefficients with only hard decision feedback from the channel decoders. Finally, we extend

the performance results to channel estimation with both training symbols and decision feedback, the latter

of which is used in the further iterations.

In applying the turbo principle, to avoid the reuse of information, only observations {r(t)}t"=i are used in

the channel estimation for multiuser detection in symbol period i. Thus the corresponding channel estimation

error is independent of r(i). However, for simplicity of discussion, we still assume that all M received

signals are used for the channel estimation while retaining this independence assumption. For largeM , this

results in only a small error in the analysis.

In the following discussion of channel estimation and PIC, we regard the channel gains {akl} and the

spreading codes {skl} as realizations of random variables. Only the transmitted symbols, decision feedback
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errors and noise are considered as random variables. Throughout this paper, all expectations, denoted as

E{·}, are over the distributions of these three variables. Thus our results are conditioned on the realizations

of {akl} and {skl}. However, by the strong law of large numbers, we will see that we can obtain identical

results for almost every realization of {akl} and {skl} in the large system limit (K,N →∞).

A. Training Symbol Based ML Channel Estimation

First we assume that there areM training symbols, channel symbols known to the receiver, within a single

coherence period. For simplicity in deriving the channel estimate, we stack the chip matched filter output of

the signal corresponding to these training symbols, rewriting (1) as

r = Sa + n, (2)

where

r =
(
rH(1), ..., rH(M)

)H

NM×1
,

n =
(
nH(1), ...,nH(M)

)H

NM×1
,

a = (a11, a12, ..., aKL)T
KL×1 ,

S =
(
(S(1)B(1))T , ..., (S(M)B(M))T

)T

NM×KL
,

B(m) =





b1(m)IL×L 0 · · · 0

0 b2(m)IL×L · · · 0
... ... . . . ...

0 0 · · · bK(m)IL×L





KL×KL

S(m) = (s11(m), s12(m), ..., sKL(m))N×KL , m = 1, ..., M.

Applying the ML criterion and the normality of the noise, we can obtain the ML channel estimate, which

is given by

â = arg max
a

P (r|a)

= arg min
a
‖r− Sa‖

= (STS)−1ST r

= R−1y, (3)
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whereR = STS and y = ST r.

It follows directly that the channel estimation error is

δa = a− â

= −R−1STn,

from which it is obvious that this error has zero mean and covariance Σa ! E
{
δaδaH

}
= σ2

nR
−1.

For a finiteM , we can compute trace {R−1} in the large system limit (i.e. whenK, N →∞while keeping

the system load, K
N = β, constant). For a system with system load β, it is well known that as K → ∞,

K
trace{R̂−1} converges to the multiuser efficiency of a decorrelator, namely 1−β [29]. R

M is equivalent to the

covariance matrix of a system with equivalent system load β′ = KL
MN = L

M β. Thus as K,N →∞, we have

trace {Σa}
M

→ σ2
n

M − Lβ
.

Therefore, for sufficiently large K and N , the variance of channel estimation error is given by

∆a =
σ2

n

M − Lβ
, (4)

which can be approximated by ∆a ≈ σ2
n

M whenM is sufficiently large.

It should be noted that, in asynchronous systems, we can remove part of the chips in the first and the

last symbol periods to obtain a similar matrix SNM−dmax×KL, where dmax denotes the largest time offsets

of different users, measured in chips. Since the training symbols have been incorporated into the spreading

codes, we can consider the columns of S as random (NM − dmax)− vectors, regardless of the time offsets

of different users. Therefore, the variance of channel estimation error in asynchronous systems is similar to

that of synchronous systems whenM is sufficiently large.

B. Channel Estimation with Decision Feedback

1) Algorithm: When decision feedback is used in place of training symbols to derive the ‘ML’ channel

estimates2, a process that assumes that the decision feedback is free of error, the channel estimation error

is caused by both the thermal noise and the decision feedback error. On applying (3), the channel estimate
2By ‘ML’ estimates, we mean using the expression obtained from the training symbol based estimation, but with symbols obtained from

decision feedback. It is not an exact ML estimate since the distribution of the decision feedback error is not considered.
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with decision feedback is given by

â = R̂−1ŷ

= R̂−1ŜT (Sa + n)

= a + R̂−1ŜT (δSa + n),

where δS ! S− Ŝ, R̂ ! ŜT Ŝ, ŷ ! ŜT r and Ŝ is the version of S in (3) obtained from the decision feedback,

which is given by

Ŝ =

((
S(1)B̂(1)

)T

, ...,
(
S(M)B̂(M)

)T
)T

NM×KL

,

B̂(m) =





b̂1(m)IL×L 0 · · · 0

0 b̂2(m)IL×L · · · 0
... ... . . . ...

0 0 · · · b̂K(m)IL×L





KL×KL

.

Hence, the channel estimation error can be decomposed into two parts

δa = −R̂−1ŜT (δSa + n)

= δaf + δan, (5)

where δaf ! −R̂−1ŜT δSa and δan ! −R̂−1ŜTn denote the channel estimation error due to the decision

feedback error and the thermal noise, respectively. It is reasonable to assume that δaf and δan are mutually

independent. (Recall our assumption concerning the use of only measurements t &= i in estimating gains at

time i.)

It is difficult to tackle the calculation of δa due to the matrix inversion R̂−1. However, we can approximate

R̂−1 by IKL×KL

M when Pe is sufficiently small. This approximation is justified by the following lemma.

Lemma III.1: When fixing K and N , we have

MR̂−1 → IKL×KL,

almost surely 3 asM →∞ and Pe → 0.

Proof: According to the definition of R̂, we have

R̂−1 = R−1 + R−1A,
3Here, a matrix is considered as a point in the probability space and the metric is induced by a matrix norm.
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whereA = (I− δRR−1)−1 − I. According to the error analysis of matrix inversion in [11], we have4

E {‖A‖F} ≤ E

{
‖δRR−1‖F

1− ‖δRR−1‖F

}
= O(Pe),

which tends to 0 as Pe → 0. Thus, we have

E
{∥∥∥R̂−1 −R−1

∥∥∥
F

}
≤

∥∥R−1
∥∥

F
E {‖A‖F} → 0,

as Pe → 0. Therefore, R̂−1 converges toR−1 almost surely as Pe → 0.

Applying the strong law of large numbers and the fact that the diagonal elements in

R =
M∑

m=1

(B̂(m)S(m))TS(m)B̂(m)

areM and the off-diagonal elements in (B̂(m)S(m))TS(m)B̂(m) are independent for different values ofm

and have zero mean, we obtain that, while keepingK andN fixed, R
M → IKL×KL almost surely, asM →∞.

Since the elements ofR−1 are continuous functions of those inR in a neighborhood ofR = MIKL×KL, we

also haveMR−1 → IKL×KL asM →∞. This completes the proof.

Therefore, we can further approximate R̂−1 by IKL×KL

M for large M and small Pe. For simplicity, our

further discussion of δaf will be based on this approximation, which will be validated by numerical results.

Consequently, in the following discussions, we use the approximations

δaf = − 1

M
ŜT δSa,

and

δan = − 1

M
ŜTn.

2) Covariance matrix of channel estimation error: We denote the covariance matrices of δa, δaf and

δan byΣa,Σf andΣn, respectively, which satisfyΣa = Σf +Σn. We first consider the channel estimation

error incurred by decision feedback errors. The following lemma shows that the channel estimation error

δaf is asymptotically biased. The proof is given in Appendix II.

Lemma III.2: When keeping K and N fixed, we have

E{δaf} → 2Pea, (6)

almost surely, asM →∞.
4x = O(Pe) means x

Pe
<∞ as Pe → 0.
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It should be noted that this bias cannot be removed a priori in the estimator since it is dependent on the

channel gain, a. However, this bias vanishes as Pe → 0.

An asymptotic expression for the elements in Σf is given in the following proposition, whose proof is

given in Appendix III, where we also explain that the conclusion also applies to asynchronous case when Pe

is sufficiently small.

Proposition III.3: For all i and j, when fixing K and N , we have that (recall that akl is the channel gain

of use k and path l)

M × (Σf )ij →






4Pe

(
|a% i

L &, mod(i,L)|2 + 1
N

∑KL
k=1, k "=i |a% k

L &, mod(k,L)|2
)

, if i = j,

4Pe

(
1 + 1

N

)
a% i

L &, mod(i,L)a
∗
% j

L &, mod(j,L)
, if i &= j and " i

L# = " j
L#,

4P 2
e

(
1 + 1

N

)
a% i

L &, mod(i,L)a
∗
% j

L &, mod(j,L)
, if " i

L# &= " j
L#

, (7)

almost surely, asM →∞.

For δan, which is caused by thermal noise, the corresponding analysis is identical to that of training

symbol based estimation. Then, we have

MΣn = Mcov
(
R̂−1ŜTn

)

= Mσ2
nR̂

−1

→ σ2
nIKL×KL, (8)

almost surely, as M → ∞. Then the covariance matrix of channel estimation error Σa ! E
{
δaδaH

}
=

Σf + Σn can be obtained from (7) and (8).

3) Variance of channel estimation error: The variance of channel estimation error can be obtained as a

corollary of the previous subsection.

Corollary III.4: On defining ∆a ! 1
KL trace {Σa}, we have

M∆a → 4Pe(1 + βL)

L
+ σ2

n, (9)

almost surely, as K,N, M →∞.

Thus, when K,N, M are sufficiently large, we have the following approximation

∆a ≈ 4Pe(1 + βL)

LM
+

σ2
n

M
. (10)

It should be noted that the channel estimation error cannot be removed by increasing M although the

variance vanishes asM →∞, since the estimate is biased and the bias cannot be removed a priori.
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C. Estimation with Both Training Symbols and Decision Feedback

We denote the number of training symbols byMt and the corresponding percentage by α = Mt
M . When the

training symbols and decision feedback are combined for channel estimation, the performance is determined

by (10), with Pe replaced by (1 − α)Pe. Decision feedback should only be used along with the training

symbols if the resulting variance is smaller than that obtained when only the training symbols are used.

Then it is easy to check that, when M and Mt are sufficiently large, Pe max, the maximum Pe assuring

performance improvement when decision feedback is used, is determined by

4(1− α)Pe(1 + βL)

LM
+

σ2
n

M
≤ σ2

n

Mt
,

which results in

Pe max =
σ2

nL

4α(1 + βL)
, (11)

from which we observe that Pe max decreases with α and β while increasing with σ2
n and L.

IV. PIC AND CHANNEL DECODER

A. Performance Analysis of PIC

For convenience of analysis, the performance of PIC is analyzed based on matched filter (MF) outputs.

We drop the index of the symbol period for notational simplicity throughout this section. For a given symbol

period, the MF outputs, which form sufficient statistics for multiuser detection, are given by

y = ST r.

In PIC based multiuser detection, the MAI reconstructed from the channel estimates and the decoder output

is subtracted directly from the MF output of the desired user. Without loss of generality, we take the l-th

path of user 1 as an example; then the MF output after PIC, which is contaminated by residual MAI and

thermal noise n1l = sT
1ln, is given by

y1l = a1lb1 +
∑

m"=l

a1mρ1l1mb1 + I1l, (12)

where

I1l =
K∑

k=2

L∑

m=1

ρ1lkm

(
akmbk − âkmb̂k

)
+ n1l,
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which is the sum of the residual interference and the thermal noise. It is obvious that E{I1l} = 0. And the

corresponding variance is given by

σ2
I ! E

{
|I1l|2

}
=

1

N

K∑

k=2

L∑

m=1

E
{
|δakmbk + δbkakm − δakmδbk|2

}
+ E

{
|n1l|2

}

=
1

N

K∑

k=2

L∑

m=1

{
E

{
|δakm|2

}
+ 4Pe |akm|2 + 4PeE

{
|δakm|2

}
+ 2E {δakma∗km}E {bkδbk}

−2E
{
|δakm|2

}
E {bkδbk}− 8PeE {akmδa∗km}

}
+ σ2

n

→ βL∆a + 4β(1− Pe)Pe + σ2
n, (13)

as K,N → ∞, where we have applied the fact that E
{
|δakm|2

}
= ∆a + 4P 2

e |akm|2, E {akmδa∗km} =

2Pe |akm|2, E {bkδbk} = 2Pe. It is easy to check that σ2
I is identical for asynchronous systems since different

time offsets do not affect the interference power.

It is difficult to apply the central limit theorem to show the asymptotic normality of the PIC output since

the variables {δakm} are mutually correlated across different users and paths. However, numerical results in

Section VI will show that the output distribution of PIC can be well approximated by a Gaussian distribution.

Thus, in the subsequent sections, we assume that the output of PIC is Gaussian distributed.

According to the properties of the crosscorrelation given in Section II.A, ρ1l1m → 0 almost surely, as

N → ∞. Thus, for large spreading gain, the interference across different paths of the same user can be

ignored. With the normality assumption of the residual MAI, it is easy to show that the variables {I1l}l=1,...,L

are mutually independent as N → ∞, which means that channel coded symbol b1 is transmitted through L

independent channels. This assumption simplifies the analysis although it does not hold exactly when N is

finite. Thus, we use MRC to collect these L replicas, resulting in the output

z1 =
L∑

l=1

â∗1la1lb1 +
L∑

l=1

â∗1lI1l. (14)

Applying Lemma III.2, we obtain that, asM,L →∞,
L∑

l=1

â∗1la1lb1 =
L∑

l=1

(
|a1l|2 − δa∗1la1l

)

→ 1−
∞∑

l=1

E {δa∗1l} a1l

= 1− 2Pe

∞∑

l=1

|a1l|2

= 1− 2Pe.
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Moreover, we can obtain that, asM, L →∞

E






∣∣∣∣∣

L∑

l=1

â∗1lI1l

∣∣∣∣∣

2



 =
L∑

l=1

E
{
|â∗1l|

2} σ2
I

=

(
1− 2

L∑

l=1

E {δa∗1la1l} +
L∑

l=1

E
{
|δa∗1l|

2}
)

σ2
I

→
(
1− 4Pe + 4P 2

e + L∆a

)
σ2

I

= ((1− 2Pe)
2 + L∆a)σ

2
I .

Therefore, whenM and L are sufficiently large, (14) can be approximated by

z1 ≈ (1− 2Pe)b1 + n1, (15)

where n1 is a CSCG random variable with variance of ((1 − 2Pe)2 + L∆a)σ2
I . An interesting observation

is that the channel estimation error not only increases the interference but also decreases the valid received

power of the desired user.

B. Performance of Channel Decoder

At the channel decoder, Pe is a function of the input signal-to-interference-plus-noise ratio (SINR) at the

input to the channel decoder given by

Pe = g

(
1

SINR

)
, (16)

where the function g can be estimated using Monte Carlo simulations. For most practical channel codes, the

following assumption is reasonable:

Assumption IV.1: Within a closed interval Ω = [0,σmax
I ], function g satisfies

• g(x) monotonically increases with x, and g(0) = 0;

• g(x) is continuously differentiable and g′(0) = 0.

V. ANALYSIS OF SYSTEM PERFORMANCE

In this section, we analyze the overall iterative system shown in Figure 1. We consider only the case

of small Pe, moderate σ2
n and moderate M and note that the analytic results become more precise as Pe

and σ2
n decrease and M increases. This configuration is reasonable for the decision feedback basedsystems

since ifM is large, training symbol based channel estimation can be adopted with marginal loss of spectral
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efficiency; ifM is small, it is difficult to carry out coherent detection; and if Pe is large, the iteration diverges.

Although the performance analysis of the channel estimation in Section III is based on large M , numerical

results in Section VI indicate that expression (10) is still valid for moderate M . We adopt the expressions

(10) and (13) in large system limits (K, N →∞).

A. Iterative Mapping

In this section, we consider the d-th iteration and couple the results from Section III and Section IV

to analyze the overall system performance. We can regard the decoding process as an iterative mapping

h : R → R in terms of the error probability of the decoder output after the d-th iteration, P (d)
e , which is

given by (recall that g is defined as the function characterizing the output error probability in terms in input

SINR in (16))

P (d)
e = h(P (d−1)

e )

≈ g
(
D0 + D1P

(d−1)
e

)
, (17)

where we ignore terms of a smaller order than Pe and 1
M since we assume small Pe and large (or moderate)

M . Based on (10), (13) and (15), the coefficients D0 and D1 are given by





D0 = σ2
n

(
1 + βL

M + Lσ2
n

M

)

D1 = 4

(
β +

β+σ2
nβL2+β2L+σ2

nL+Lβσ2
n+L(σ2

n)
2

M

) .

B. Condition for Convergence

A reasonably good initialization, which results in sufficiently small channel estimation error and MAI

in the first iteration, is necessary to guarantee the convergence of the iterative mapping described in (17).

In the initial stage, only training symbols are used for the channel estimation since no decision feedback

is available then. Any non-iterative multiuser detection technique can be applied to the initializing stage.

For practical applications, we can use the LMMSE detector, whose performance using imperfect channel

estimation can be obtained using the replica method [18].

For convergence, the variance of input interference and noise of the initializing stage, denoted by σ2
I (0)

and obtained from the SINR of the LMMSE detector, must satisfy the following conditions:

• σ2
I (0) is located within the interval Ω defined in Section IV.B, namely

σ2
I (0) < σmax

I . (18)
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This condition assures a reasonably good initial performance of the iterations.

• The variance of interference and noise decreases with iteration time, namely

g(σ2
I (0)) <

σ2
I (0)−D0

D1
. (19)

This condition assures that the iterations do not diverge.

C. Condition Assuring the Uniqueness of the Fixed Point

If there exists more than one fixed point, the iteration may become stuck at a suboptimal fixed point and

not converge to the optimal one. The following proposition provides a sufficient condition for the uniqueness

of the fixed point and the corresponding convergence rate.

Proposition V.1: (1) If there exists a γ < 1, such that

D1 ≤
γ

maxx∈Ω (g′(x))
, (20)

then there exists only one fixed point xf for the iterative mapping xk+1 = h (xk), and for every initial point

x0 ∈ Ω, the mapping converges to xf with an exponential rate, namely ‖xk − xf‖ ≤ γk

1−γ ‖x0 − xf‖.

(2) If there exists an x1 ∈ Ω such that 1
g′(x1) < D1 < x1

g(x1) , then there exists a D0 such that there is more

than one fixed point for h.

Proof: (1) The condition D1 ≤ γ
maxx∈Ω(g′(x)) implies that h

′(x) = g′(D0 + D1x) ≤ γ < 1. Then h(·)

is a contraction mapping, and the conclusions follow due to Banach’s fixed point theorem [14].

(2) Letting xf = g(x1) and settingD0 = x1−D1xf , we can show thatD0 > 0 due to the assumption that

D1 < x1
g(x1) = x1

xf
. It is easy to check that xf is a fixed point and g′(D0 + D1xf ) = D1g′(x1) > 1. Hence,

there exists an ε > 0 such that for all x ∈ (xf , xf + ε), g(D0 + D1x) > x. However, g(D0 + D1x2) < x2

for x2 = g (σ2
I (0)) due to condition (19). If x2 < xf , there exists at least one fixed point within (0, x2) since

g(D0) > 0; if x2 > xf , there exists at least one fixed point different from xf within (xf , x2).

It should be noted that condition (20) is sufficient but not necessary for the uniqueness of the fixed point.

This condition is more stringent than the condition of convergence in (19) since it assures both the uniqueness

of the fixed point and the exponential convergence rate. The second part shows that a moderateD1 may cause

multiple fixed points. A useful conclusion drawn from (20) is that this iterative procedure does not work

well for those channel codes, such as powerful turbo codes or LDPC codes, that have a steep performance

curve (bit error rate versus SINR) which implies a large value ofmaxx∈Ω (g′(x)). This will be demonstrated

in numerical simulations in Section VI.
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D. Asymptotic Multiuser Efficiency

As is described in [29], the asymptotic multiuser efficiency measures the slope at which the bit-error-rate

goes to zero in logarithmic scale, giving intuition into the performance loss from multiuser interference.

Suppose that there is only one fixed point for the iterative mapping h, and let Pe(σ2
n) be this fixed point

when the noise power is σ2
n. Similarly, let D0(σ2

n) and D1(σ2
n) be the corresponding values of D0 and D1 in

(17). It is obvious that Pe(0) = 0 and D0(0) = 0.

The asymptotic multiuser efficiency is given by

AME = lim
σ2

n→0

σ2
n

D0(σ2
n) + D1(σ2

n)Pe(σ2
n)

=
1

dD0(σ2
n)

dσ2
n

∣∣∣
σ2

n=0
+ d(D1(σ2

n)Pe(σ2
n))

dσ2
n

∣∣∣
σ2

n=0

.

IfH(Pe,σ2
n) = g (D0(σ2

n) + D1(σ2
n)Pe)−Pe, then Pe(σ2

n) is the unique solution ofH(Pe,σ2
n) = 0. Applying

the assumptions that g′(0) = 0 and Pe(0) = 0, we have

d(D1(σ2
n)Pe(σ2

n))

dσ2
n

∣∣∣
σ2

n=0
= D1(0)

dPe(σ2
n)

dσ2
n

∣∣∣
σ2

n=0

= −D1(0)

∂H(Pe,σ2
n)

∂σ2
n

∣∣∣
σ2

n=0

∂H(Pe,σ2
n)

∂Pe

∣∣∣
σ2

n=0

= −D1(0)

∂(D0(σ2
n)+D1(σ2

n)Pe)
∂σ2

n

∣∣∣
σ2

n=0
g′(0)

D1(0)g′(0)− 1

= 0.

Thus

AME =
1

dD0(σ2
n)

dσ2
n

|σ2
n=0

=
1

1 + Lβ
M

. (21)

From (21), we can see that the loss of AME is due to the channel estimation error incurred by the thermal

noise. The impact of the decision feedback error vanishes as σ2
n → 0, while that of the channel estimation

error remains.

E. Computational Aspect

The main computational cost of the iterative channel estimation and multiuser detection includes:
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• Solving the linear equation R̂â = y for ML channel estimation.

• Reconstructing the channel symbols and cancelling the interference.

• Channel decoding.

Since the channel symbol reconstruction is similar to the encoding procedure and the interference cance-

lation requires only subtractions, this is not a bottleneck of the whole procedure and the corresponding

computational cost is of complexity O(K). Real-time channel decoding can also be accomplished in a way

similar to Turbo codes. Therefore, the main bottleneck is solving the linear equation for channel estimation.

Direct Gaussian Eliminatation, which is of complexity O(K3), can be applied to solve the equation R̂â =

y when K is small. When K is large, iterative techniques of solving linear equations, such as the Jacobi

method and the Gauss-Seidel method, can be applied. For assuring the convergence, we cite the following

lemma from [10]:

Lemma V.2: The sufficient and necessary condition for the convergence of iterations in solving the linear

equationAx = y is that

• A and 2 diag(A)−A are both positive definite in the Jacobi method5;

• A is positive definite in the Gauss-Seidel method.

The Gauss-Seidel method always converges when β < 1 since R̂ is positive definite when K < N . For

the Jacobi method, it is easy to check that diag(R̂) = IK×K . Since the largest eigenvalue of R̂ converges to
(
1 +

√
β
)2 [3] almost surely asK,N →∞, the eigenvalues in 2 diag(R̂)− R̂ are less than 2−

(
1 +

√
β
)2

almost surely in the large system limit. Therefore,
√

β < 1 is a sufficient condition for the almost sure

convergence of Jacobi iteration in the large system limit. Then, when K and N are sufficiently large and

K < N , we can use either Gauss-Seidel or Jacobi iterations to estimate the channel coefficients efficiently.

VI. NUMERICAL RESULTS

A. Channel Estimation

Figure 2 shows the average variance of the channel estimates versus the coherence time M with the

configuration of β = 0.2, L = 5, Mt = 0, Pe = 0.1 and the signal-to-noise ratio (SNR)= 5dB6. The

asymptotic results obtained from (10) and the simulation results for finite systems (N = 100) with spreading

codes for the shifted model are represented by solid and dotted curves, respectively. In this figure, the
5diag(X) denotes a diagonal matrix constituted by the diagonal elements in matrixX
6Note that Pe and SNR are not mutually independent; however, we set these two parameters arbitrarily to test the validity of asymptotic results.
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estimation error variance caused by decision feedback and noise are denoted by ∆f and ∆n, respectively.

The corresponding asymptotic results are obtained from the first and the second terms in (10), respectively.

We can observe that the asymptotic results match the simulation results well even when M is small. This

figure also demonstrates the validity of results based on the independence assumption of the spreading codes

given in Section II.A.

B. Normality of PIC Output

Figure 3 shows the channel symbol error rate7 with the configuration of SNR = 10dB, K = N = 30

and Pe = 0.1 and 0.05. The solid curves represent the results obtained from numerical simulations and the

dashed curves represent the results with the assumption that the output of PIC is CSCG distributed. The gap

between the numerical results and CSCG based prediction is small, thus justifying the normality assumption

of the PIC output.

C. User Capacity

We define the user capacity to be the maximum system load βmax with which the system can achieve

the information bit error rate of 10−3. Two types of channel codes, the convolutional code (35, 23)8 and a

turbo code (with two constituent codes (37, 21)8), with bit rate R = 1
2 and codeword length 1024 are used

in this paper and their error rates for both information bits and extrinsic information based channel symbols

are shown in Figure 4. The corresponding βmax’s for various values of coherence time M , denoted by

‘iterative’, are given in Figure 5 and Figure 6 for convolutional codes and turbo codes, respectively, with the

configuration α = 0.2, SNR= 5dB and L = 5. The βmax’s of the non-iterative LMMSE detector, denoted

by ‘LMMSE’, are given for comparison. We can see that the iterative system achieves substantially higher

user capacity than the non-iterative one. The performance of systems with ideal initialization, where actual

channel parameters are provided by a genie in the initialization stage, denoted by ‘Perfect initialization’,

implies that a good initialization can improve the performance considerably. Thus, blind or semi-blind non-

iterative techniques, which make use of information symbols, can be applied to obtain a better initialization.

For comparison, the user capacities of both iterative and non-iterative systems with perfect channel state

information are also given in both figures. An interesting observation is that the relative performance gain
7This channel symbol error rate is equivalent to bit error rate when the output of PIC is used directly for the detection (without channel

decoding).
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of iterative systems over the non-iterative ones is smaller for turbo codes than for convolutional codes. This

is due to the steeper waterfall region in turbo codes.

VII. CONCLUSIONS

In this paper, we have analyzed the performance of decision feedback based iterative channel estimation

and multiuser detection in multipath DS-CDMA channels. The decoding process has been described as an

iterative mapping in terms of the variance of the channel decoder output, and conditions assuring the conver-

gence and uniqueness of a fixed point have been proposed. Numerical results show that the initialization is

important to the iterations, thus necessitating the use of non-iterative blind or semi-blind channel estimation

algorithms for initialization purposes. Another observation of interest is that the gain of the iterative process

over a non-iterative one is small when a near-optimal channel coding scheme is used.

APPENDIX I

VALIDITY OF INDEPENDENCE MODEL FOR SPREADING CODES

In (1), for different values of l andm, skl and skm are generated by the same binary sequence with different

offsets. Our purpose is to show that ifK and N are large enough, we can regard the shifted spreading codes

of different paths of a given user as independent sequences. The properties based on this assumption, which

are used for the system performance analysis in this paper, include:

• The properties of crosscorrelation ρklmn in Section II.A.

• The distribution of the eigenvalues of the matrix SST , when developing the expression of ∆n for finite

M and largeK in Section III.C. Our assumption means that the corresponding distribution of the shifted

model is asymptotically identical to that of the independent model.

It is easy to check the first item using the symmetry of the binary distribution. However, the validity of

the second one is non-trivial and is of considerable importance when applying the theory of large random

matrices to multipath fading channels. We can tackle this problem by showing that the moments of the

eigenvalues in both models are the same via the following lemma.

Lemma I.1: Denote a generic eigenvalue of SST by λ. Then the m-th moment of λ in the shifted model

is given by

E {λm} =
m∑

k=1

(β′)k
∑

m1+...+mk=m

c(m1, ..., mk), as K →∞,
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which is the same expression of that of the independent model, and where the definition of c(m1, ..., mk) is

given in [19] and β′ = LK
MN .

Proof: Using similar arguments to those in [19], we have

1

N
E

{
trace{(SST )m}

}

=
1

Nm+1

K∑

i1,...,im=1

N∑

j1,...,jm=1

E{Vim,j1Vi1,j1 ...Vim−1,jmVim,jm}, (22)

where Vi,j =
√

NSij .

For any ir &= is, Vir,jp = Vis,jq when " ir
L # = " is

L # and jp − jq equals the offset difference between these

two shifted sequences. However, the probability of such events vanishes as K →∞ since

P (|ir − is| < L) ≤



 m

2



 2L + 1

KL
→ 0, asK →∞.

Thus, as K → ∞, the term involving Vi,j’s of different users, which are mutually independent, dominates

the summation in (22). The remaining part of the proof is the same as in [19].

The following lemma (Theorem 30.1 in [5]) provides a sufficient condition for the equality of two proba-

bility measures when their moments are identical .

Lemma I.2: Let µ be a probability measure on the real line having finite moments αk =
∫∞
−∞ xkµ(dx) of

all orders. If the power series
∑∞

k=1 αk
rk

k! has a positive radius of convergence, then µ is the only probability

measure with the moments {αm}m=1,2,....

For applying Lemma I.2, we need the following lemma which provides an upper bound for the moments

of the eigenvalues.

Lemma I.3: For any eigenvalue λ of SST , there exists a constant C > max(1, β′) such that for m =

1, 2, ...

E {λm} < Cmmm−2. (23)

Proof: The result follows by induction onm.

It is easy to verify that (23) holds when m = 1, 2. Suppose E {λn} < Cnnn−2, for n = 1, 2, ..., m. Use

the following recursive formula [19] to evaluate E {λm+1}, which is given by

E
{
λm+1

}
=

m+1∑

k=1

β′
∑

m1+...+mk=m+1

E
{
λm1−1

}
· · ·E

{
λmk−1

}
.

23



Then we have

E
{
λm+1

}
= β′

(
1 + mE{λ} + E{λm} +

m−1∑

k=2

∑

m1+...+mk=m+1

E
{
λm1−1

}
...E

{
λmk−1

}
)

< β′
(

1 + mβ′ + Cmmm−2 +
m−1∑

k=2

∑

m1+...+mk=m+1

k∏

i=1

Cmi−1mmi−3
i

)

< β′
(

1 + mβ′ + Cmmm−2 +
m−1∑

k=2

∑

m1+...+mk=m+1

Cm+1−kmm−1−k

)

< Cm+1



1 + mm−1 +
m−1∑

k=2



 m

k − 1



 mm−1−k





< Cm+1



1 + mm−1 +
m−2∑

k=1



 m− 1

k



 mm−1−k





= Cm+1
m−1∑

k=0



 m− 1

k



 mm−1−k

= Cm+1(1 + m)m−1,

where the first inequality is based the assumption on n = 1, ..., m and the fact that E{λ} = β′; the third

inequality applies the condition that C > max(1, β′) and mm−1 > mm−2 + m for m > 2. This concludes

the proof.

Applying Stirling’s formula and Lemmas I.1,2,3, we can obtain the conclusion that the eigenvalue distri-

bution of SST in the shifted model is identical to that of the independent model, thus assuring the assumption

that the columns of S can be regarded as independent in the large system limit.

APPENDIX II

PROOF OF LEMMA III.2

Proof: From the definition of δaf , we have

E{δaf} = − 1

M

(
E{ST δSa}− E{δST δSa}

)
. (24)

We consider the term E{δST δSa} first. It is easy to check that (recall that skl denotes the spreading code

of user k along path l)

1

M
E

{(
δST δS

)
ij

}
=

1

M

M∑

m=1

sT
pq(m)srs(m)E {δbpδbr}

24



=





0, if p &= r

4Pe
M

∑M
m=1 sT

pq(m)srs(m), if p = r
,

where p =
⌈

i
L

⌉
, q = mod (i, L), r =

⌈
j
L

⌉
, s = mod (j, L). It should be noted we applied the fact that

E {δbpδbr} = 4Pe in the second equality.

According to Assumption II.3, the spread codes are mutually independent for different users or different

paths. Thus, by applying the strong law of large numbers, we have

1

M

M∑

m=1

sT
pq(m)srs(m) →





0, if (p, q) &= (r, s)

1, if (p, q) = (r, s)
.

Therefore, we have

1

M
E

{(
δST δS

)
ij

}
→





0, if i &= j

4Pe
M , if i = j

, almost surely, asM →∞

Similarly, we can show that

1

M
E

{(
ST δS

)
ij

}
→





0, if i &= j

2Pe
M , if i = j

, almost surely, asM →∞

This completes the proof.

APPENDIX III

PROOF OF PROP. III.3

Proof: The covariance matrix Σf is given by

Σf ! 1

M2
cov

(
ŜT δSa

)

=
1

M2
E

{
ST δSaaHδSTS

}
− 1

M2
E

{
ST δSaaHδST δS

}

− 1

M2
E

{
δST δSaaHδSTST

}
+

1

M2
E

{
δST δSaaHδST δS

}

− E{δaf}E{δaf}H . (25)

The elements in ST δSaaHδSTS are given by

(
ST δSaaHδSTS

)
ij

=
M∑

p=1

M∑

q=1

KL∑

k=1

KL∑

l=1

s̃T
i (p)δs̃k(p)s̃T

j (q)δs̃l(q)aka∗l ,
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where s̃i(p) ! b% i
L &

(p)s% i
L &, mod(i,L)(p), namely the spreading code (incorporating the channel symbol) of

the mod(i, L)-th path of user " i
L# at symbol period p, δs̃i(p) ! δb% i

L &
(p)s% i

L &, mod(i,L)(p) and ak is the k-

th element of vector a and equals a" k
L#,mod(k,L). To compute the corresponding expectation, we apply the

following properties, which are based on Assumption II.4:

• When p = q, if " k
L# = " l

L#, P (δs̃k(p) &= 0, δs̃l(q) &= 0) = Pe, since δs̃k(p) and δs̃l(p) are determined

by the same decision feedback;

• When p = q, if " k
L# &= " l

L#, P (δs̃k(p) &= 0, δs̃l(q) &= 0) = P 2
e , since δs̃k(p) and δs̃l(p) are determined

by decision feedback from different users;

• When p &= q, P (δs̃k(p) &= 0, δs̃l(q) &= 0) = P 2
e , since δs̃k(p) and δs̃l(p) are determined by decision

feedback from different symbol periods;

• When δs̃k(p) &= 0, δs̃k(p) = 2s̃k(p).

Thus the expectation of i− jth element of ST δSaaHδSTS is given by

E
{(

ST δSaaHδSTS
)

ij

}

= 4Pe

M∑

p=1

KL∑

k=1

∑

% l
L &=%

k
L &

s̃T
i (p)s̃k(p)s̃T

j (p)s̃l(p)aka∗l

+ 4P 2
e

M∑

p=1

KL∑

k=1

∑

% l
L &"=%

k
L &

s̃T
i (p)s̃k(p)s̃T

j (p)s̃l(p)aka∗l

+ 4P 2
e

M∑

p, q = 1

p "= q

KL∑

k=1

KL∑

l=1

s̃T
i (p)s̃k(p)s̃T

j (q)s̃l(q)aka∗l

= T1 + T2 + T3,

where T1, T2 and T3 represent the corresponding three summations, respectively.

Applying the strong law of large numbers and the assumption on the spreading codes that {s̃i(p)} are

independent for different values of i or p, we can obtain that, as M → ∞, the following conclusions hold

almost surely:

1

M
T1 →






4Pe

(
|ai|2 + 1

N

∑KL
k=1, k "=i |ak|2

)
, if i = j,

4Pe

(
1 + 1

N

)
aia∗j , if i &= j and " i

L# = " j
L#,

0, if " i
L# &= " j

L#
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1

M
T2 →





4P 2

e

(
1 + 1

N

)
aia∗j , if " i

L# &= " j
L#,

0, if " i
L# = " j

L#
1

M2
T3 → 4P 2

e aia∗j , ∀i, j.

We can apply the same manipulation and obtain that E
{
ST δSaaHδST δS

}
= E

{
δST δSaaHδSTS

}
=

1
2E

{
δST δSaaHδST δS

}
asM →∞. Therefore, we can obtain (7) since the sum of the middle three terms

in (25) is zero and T3 cancels E{δaf}E{δaf}H .

It should be noted that the above analysis is also valid for asynchronous case when Pe is sufficiently small.

Similar to the discussion in Section III.A, we can remove part of the chips in the first and the last symbol

periods to obtain a similar matrix SNM−dmax×KL, where dmax denotes the largest time offsets of different

users, measured in chips. When Pe is sufficiently small andM is sufficiently large, we can ignore the terms

scaled by P 2
e and the edge effect in the first and last symbol period. Then, we have

E
{(

ST δSaaHδSTS
)

ij

}
≈ 4Pe

KL∑

k=1

∑

% l
L &=%

k
L &

s̃T
i s̃ks̃

T
j s̃laka∗l ,

where s̃k is the k-th column of matrix S, which converges to T1 asM →∞.
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Fig 1. CDMA system with an iterative receiver 
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Abstract

A game-theoretic analysis is used to study the effects
of receiver choice on the energy efficiency of multi-hop
networks in which the nodes communicate using Direct-
Sequence Code Division Multiple Access (DS-CDMA). A
Nash equilibrium of the game in which the network nodes
can choose their receivers as well as their transmit powers
to maximize the total number of bits they transmit per unit
of energy is derived. The energy efficiencies resulting from
the use of different linear multiuser receivers in this context
are compared, looking at both the non-cooperative game
and the Pareto optimal solution. For analytical ease, par-
ticular attention is paid to asymptotically large networks.
Significant gains in energy efficiency are observed when
multiuser receivers, particularly the linear minimum mean-
square error (MMSE) receiver, are used instead of conven-
tional matched filter receivers.

1 Introduction

In a wireless multi-hop network, nodes communicate
by passing messages for one another; permitting multi-hop
communications, rather than requiring one-hop communi-
cations, can increase network capacity and allow for a more
ad hoc (and thus scalable) system (with little or no central-
ized control). For these reasons, and because of their poten-
tial for commercial, military, and civil applications, wireless
multi-hop networks have attracted considerable attention
over the past few years. In these networks, energy efficient
communication is important because the nodes are typi-
cally battery-powered and therefore energy-limited. Work
on energy-efficient communication in these multi-hop net-
works has often focused on routing protocols; this work in-
stead looks at power control and receiver design choices that

∗This research was supported in part by the U. S. Air Force Re-
search Laboratory and in part by the Defense Advanced Research Projects
Agency.

can be implemented independently of (and thus in conjunc-
tion with) the routing protocol.

One approach that has been very successful in research-
ing energy efficient communications in both cellular and
multi-hop networks is the game-theoretic approach de-
scribed in [1, 2]. Much of the game-theoretic research in
multi-hop networks has focused on pricing schemes (e.g.
[3, 4]). In this work, we avoid the need for such a pricing
scheme by using instead a nodal utility function to capture
the energy costs. It further differs from previous research
by considering receiver design, as [5] does for cellular net-
works.

We propose a distributed noncooperative game in which
the nodes can choose their transmit power and linear re-
ceiver design to maximize the number of bits that they can
send per unit of power. After describing the network and in-
ternodal communications in Section 2, we derive the Nash
equilibrium for this game, as well as for a set of games with
set receivers, in Section 3. We then extend the asymptotic
work of Tse and Hanly [6] to fit the multihop network struc-
ture in Section 4; we apply this in Section 5 to find the
Pareto optimal solution in an asymptotically large, SINR-
balanced network. Finally we present some numerical re-
sults and a conclusion in Sections 6 and 7.

2 System Model

Consider a wireless multi-hop network with K nodes
(users) and an established logical topology, where a se-
quence of connected link-nodes l ∈ L(k) forms a route
originating from a source k (with k ∈ L(k) by definition).
Let m(k) be the node after node k in the route for node k.
Assume that all routes that go through a node k continue
through m(k) so that node k transmits only to m(k). Nodes
communicate with each other using DS-CDMA with pro-
cessing gain N (N chips per bit).

The signal received at a node m (after chip-matched fil-
tering) sampled at the chip rate over one symbol duration
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can be expressed as

r(m) =

K∑
k=1

√
pkh(m)

k bksk + w(m) (1)

where pk, bk, and sk are the transmit power, transmit-
ted symbol, and (binary) spreading sequence for node k;
h(m)

k is the channel gain between nodes k and m; and
w(m) is the noise vector which is assumed to be Gaus-
sian with mean 0 and covariance σ2 I. (We assume here
pm = 0.) Assume the spreading sequences are random,
i.e., sk =

1
√

N
[v1 . . . vN]T , where the vi’s are independent

and identically distributed (i.i.d.) random variables taking
values {−1,+1} with equal probabilities. Denote the cross-
correlations between spreading sequences as

ρk j = sT
k s j, (2)

noting that ρkk = 1 for all k.
Let us represent the linear receiver at the mth node for

the kth signature sequence by a coefficient vector c(m)
k . The

output of this receiver can be written as

y = ck
T r(m) (3)

=
√

pkh(m)
k bkck

T sk +
∑
j,k

√
p jh

(m)
j b jck

T s j + ck
T w(m). (4)

The signal-to-interference-plus-noise ratio (SINR), γk, of
the kth user at the output of receiver m(k) is

γk =
pkh(m(k))

k
2 (

ck
T sk

)2

σ2ck
T ck +

∑
j,k p jh

(m(k))
j

2 (
ck

T s j

)2 . (5)

Each user has a utility function that is the ratio of its
effective throughput to its transmit power, i.e.,

uk =
Tk

pk
. (6)

Here, the throughput, Tk, is the net number of information
bits sent by k (generated by k or any node whose route goes
through k) and received without error at the intended des-
tination, m(k), per unit of time. (We assume that all the
congestion control is done in the choice of routing.)

Following the discussion in [5], we will use

Tk =
L
M

R f (γk) (7)

where L and M are the number of information bits and the
total number of bits in a packet, respectively (without loss
of generality assumed here to be the same for all users); R is
the transmission rate, which is the ratio of the bandwidth to
the processing gain and is taken for now to be equal for all

users; and f (·) is an efficiency function that closely approx-
imates the packet success rate. This efficiency function can
be any increasing, continuously differentiable, sigmoidal1

function with f (0) = 0 and f (+∞) = 1. See [5] for more
discussion of the efficiency function.

Using (7), (6) becomes

uk =
L
M

R
f (γk)

pk
. (8)

When the receiver used is a matched filter (MF) (i.e.
c(m(k))

k = sk), the received SINR is

γMF
k =

pkhm(k)
k

2 (
sk

T sk

)2

σ2sk
T sk +

∑
j,k p jh

m(k)
j

2 (
sk

T s j

)2 (9)

=
pkhm(k)

k
2

σ2 +
∑

j,k p jh
m(k)
j

2
ρ2

k j

. (10)

When the receiver is a linear minimum mean-squared er-
ror (MMSE) receiver , the filter coefficients and the received
SINR are [7]

cMMSE
k =

√
pkhm(k)

k

1 + pkhm(k)
k

2
sT

k A−1
k sk

A−1
k sk (11)

and

γMMSE
k = pkhm(k)

k
2
sT

k A−1
k sk, (12)

where

Ak = σ
2 I+

∑
j,k

p jh
m(k)
j

2
s jsT

j . (13)

When the receiver is a decorrelator2 (DE) (i.e. C =

[c1 · · · cK] = S(ST S)−1 where S = [s1 · · · sK]), the received
SINR is

γDE
k =

pkhm(k)
k

2

σ2cT
k ck
. (14)

For any linear receiver with all nodes’ coefficients cho-
sen independently of their transmit powers (including the
MF and DE), as well as for the MMSE receiver,

∂γk

∂pk
=
γk

pk
. (15)

1A continuous increasing function is sigmoidal if there is a point above
which the function is concave and below which the function is convex.

2Here, we must assume that K ≤ N.
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3 The Noncooperative Power-Control Game

Let G =
[
K , {Ak}, {uk}

]
denote the noncooperative game

where K = {1, . . . ,K} and Ak = [0, Pmax] × �N is the strat-
egy set for the kth user. Here, Pmax is the maximum allowed
power for transmission. Each strategy in Ak can be written
as ak = (pk, ck), where pk and ck are the transmit power and
the receiver filter coefficients, respectively, of user k. Then
the resulting noncooperative game can be expressed as the
maximization problem for k = 1, . . . ,K:

max
ak

uk =
LR
M

max
pk ,ck

f (γk(pk, ck))
pk

, (16)

where γk is expressed explicitly as a function of pk and ck.
This is similar to the noncooperative power-control game

in [5]; here, however, the channel gains are between pairs
of nodes rather than between a node and the base-station.

Since the choice of receiver is independent of the trans-
mit power and f (·) is an increasing function, the analysis
of [5] applies, so the maximization from (16) becomes:

max
pk ,ck

f (γk(pk, ck))
pk

= max
pk

f (maxck γk(pk, ck))
pk

. (17)

Note that the MMSE receiver achieves the maximum SINR
amongst all linear receivers, so that if a Nash equilibrium
exists, at that equilibrium all receivers must be MMSE re-
ceivers. Then the maximization problem becomes

max
pk

f (γMMSE
k (pk))

pk
. (18)

Let GC =
[
K , {[0, Pmax]}, {uk}

]
denote the noncoopera-

tive game that differs from G in that users cannot choose
their linear receivers but are forced to use the receive fil-
ter coefficients [c1 · · · cK] = C (which may be a function
of the powers, P). The resulting noncooperative game can
be expressed as the following maximization problem for
k = 1, . . . ,K:

max
ak

uk = max
pk

uk(pk, ck) =
LR
M

max
pk

f (γck
k (pk))
pk

(19)

where γck
k is expressed explicitly as a function of pk. Then

the maximization problem in (18) is one of the games GC
when C is chosen to be the MMSE receivers.

For any C matrix (or C(P) for which (15) holds), the
utility function for each user is maximized when

pk = min{Pk, p∗k} (20)

where p∗k is the unique positive number that satisfies

f (γck
k (p∗k)) = γck

k (p∗k) f ′(γck
k (p∗k)). (21)

As long as the users all have the same efficiency function,

γc1
1 (p∗1) = . . . = γcK

K (p∗K) = γ∗ (22)

where γ∗ is the unique positive number that satisfies

f (γ∗) = γ∗ f ′(γ∗). (23)

Finally, since f (γk)
pk

is quasi-concave3 in pk, we can use
the result cited in [2, Appendix I]: GC has a Nash equilib-
rium and, as is the case in [5], it is unique. At this equilib-
rium, unless there is a node k with p∗k > Pk, the powers are
such that the nodes are SINR-balanced (i.e. (22) holds).

Returning to the game G, a similar result holds: there
exists a unique equilibrium where all receivers are MMSE
detectors and, if the power limit is high enough, the powers
are SINR-balanced.

4 Asymptotically Large Systems: Extend-
ing the Tse-Hanly Equations to Multi-Hop
Networks

Assume that the channel gains are independent. That is,
in the asymptotic regime when N,K → ∞ while K/N = β,
the interferers’ channel gains, h(m)

k
2

for all m , k,m(k),
are iid realizations of the random variable G with pdf fG,
and the primary channel gains, h(m(k))

k
2

for all k, are iid
realizations of the random variable H with pdf fH (where
fH(h) = 0∀h ≤ 0). Let q = P{m( j) = m(k)} for all j , k.

We can apply results from [6] to analyze the nodes’
SINRs. Then we find a probability density function for p
such that in an asymptotically large system where all nodes
have powers distributed by this function, with probability
one all nodes have SINR of at least γ for some γ. If this dis-
tribution is not unique, we choose the one that minimizes
the nodes’ powers. For simplicity, and since we are consid-
ering the asymptotic regime, we assume that the distribution
of pk is independent of all channel gains except for h(m(k))

k
2
.

For convenience of notation, let fp,H(·, ·) = f
pk ,h

(m(k))
k

2 (·, ·),

and note
∫ ∞

0 f (p, h)dp = fH(h) for all h. Then the joint

density of pk, h(m(k))
k

2
, and h(m( j))

k
2

for j , k is

f
pk ,h

(m(k))
k

2
,h(m( j))

k
2 (p, h, g) = fp,H(p, h)δ(g − h)q

+ fp,H(p, h) fG(g)(1 − q). (24)

Applying the results from [6], when the receiver at node
k is a matched filter, decorrelator, or MMSE receiver, the
random SINR at the receiver converges in probability as

3A function is quasi-concave if there exists a point below which the
function is nondecreasing and above which the function is non-increasing.
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N,K → ∞ while K/N = β. These asymptotic SINRs are
uniquely described by the equations (where j , k):

γMF =
pkh(m(k))

k
2

σ2 + βE
[
p jh

(m(k))
j

2
] (25)

γDE =

 pkh(m(k))
k

2
(1−β)

σ2 , α < 1;
0, α ≥ 1.

(26)

and

γMMSE =
pkh(m(k))

k
2

σ2+β
∫ ∞

0 dp
∫ ∞

0 dg fP(p) fG(g)I(pg, pkh(m(k))
k

2
, γMMSE)

,

(27)

where I(a, b, c) = ab
b+ac .

If the nodes choose their transmit powers so that the
SINRs are balanced, the following theorem determines
what SINRs are achievable at all receivers as well as the
minimum transmit powers to achieve any achievable SINR
when the nodes use the MMSE receiver, under the assump-
tions listed above.

Theorem 4.1. A necessary and sufficient condition for an
SINR, γ, to be achievable is for

βγq
1

1 + γ
+ βγ(1 − q)E

[
G

H + γG

]
< 1. (28)

When (28) holds, each user can achieve the desired SINR,
γ, and the minimum power solution to do so is to assign
each node, k, transmit power

pk = PMMSE

(
h(m(k))

k
2
, γ

)
(29)

=
1

h(m(k))
k

2 ·
γσ2

1 − βγq 1
1+γ − βγ(1 − q)E

[
G

H+γG

] . (30)

4.1 Proof of Theorem 4.1

We start with a lemma that is a straightforward conse-
quence of the definition of I(a, b, c).

Lemma 4.2. For all positive real numbers a0, a, b, c, a0 ≤ a
if and only if I(a0, b, c) ≤ I(a, b, c).

Then the proof follows.

Proof. To show necessity, assume that there is a pdf f with∫ ∞
0 f (p, h)dp = fH(h) for all h, such that in an asymptot-

ically large system where all nodes have powers and pri-
mary channel gains distributed by f , with probability one

all nodes have SINR when using an MMSE receiver of at
least γ for some set γ. Let Q = inf{ph : f (p, h) > 0}. Then

Q
γ
≥ σ2 + β

∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh f

pk ,h
(m(k))
k

2
,h(m( j))

k
2 (p, h, g)I(pg,Q, γ)

= σ2 + βq
∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h)I(ph,Q, γ)

+ β(1 − q)
∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h) fG(g)I(ph

g
h
,Q, γ)

≥ σ2 + βq
∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h)I(Q,Q, γ)

+ β(1 − q)
∫ ∞

0
dg

∫ ∞

0
dp

∫ ∞

0
dh fp,H(p, h) fG(g)I(Q

g
h
,Q, γ)

= σ2 + βq
Q

1 + γ
+ β(1 − q)

∫ ∞

0
dg

∫ ∞

0
dh fH(h) fG(g)

gQ
h + γg

= σ2 + Qβq
1

1 + γ
+ Qβ(1 − q)E

[
G

H + γG

]
. (31)

This implies that

Q
(
1 − βγq

1
1 + γ

− βγ(1 − q)E
[

G
H + γG

])
≥ γσ2 > 0,

(32)

so βγq 1
1+γ + βγ(1 − q)E

[
G

H+γG

]
< 1, proving necessity.

When (28) holds, it is easy to show that PMMSE (h, γ) is
positive for all primary channel gains, h. It is also straight-
forward to show that if each node, k, uses transmit power

PMF

(
h(m(k))

k
2
, γ

)
, all nodes will achieve the SINR require-

ment, γ, finishing the proof of sufficiency.
Finally, consider any other joint distribution of powers

and primary channel gains whose marginal distribution for
H is fH , and let Q∗ be the minimal received power in this
distribution. Then by exactly the same argument as was
used in the proof of necessity,

Q∗ ≥
γσ2

1 − βγq 1
1+γ − βγ(1 − q)E

[
G

H+γG

] (33)

= hPMMSE(h, γ), ∀h > 0. (34)

This means that assigning powers according to PMMSE does
indeed give the minimal power solution. �

5 A Global Optimization Problem

A useful global optimization problem is

max
K∑

k=1

αkuk =
L
M

R max
K∑

k=1

αk f (γk)
pk

, (35)

where the αk’s are set weighting variables. This problem is
equivalent to finding a Pareto-optimal solution of the game.
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According to [5], even in the special case of a cellular sys-
tem where L(k) = {k} for all nodes k = 1, 2, . . . ,K and all
nodes are transmitting to the base-station, “Pareto-optimal
solutions are, in general, difficult to obtain.” For simplic-
ity, we restrict the problem by requiring that the solution
is “fair”: all nodes have equal receiver output SINRs (i.e.
SINR-balancing), so γ = γ1 = γ2 = . . . γK .

With this assumption, (35) becomes

L
M

R max f (γ)
K∑

k=1

αk

pk
. (36)

For the matched filter, we can apply (5) with m = m(k)
to see that the users’ SINRs are equal if and only if(

B +
(

1
γ
+ 1

)
D
)

p(γ) = σ21 (37)

where B is a K by K matrix with entries Bk j = −h(m(k))
j

2
ρ2

k j,
D is K by K diagonal matrix with diagonal entries Dkk =

h(m(k))
k

2
, and 1 is a vector of K ones.

The SINR that maximizes (36) is the γ that satisfies

0 =
∂

∂γ

 f (γ)
K∑

k=1

αk

pk(γ)

 (38)

=
∂

∂γ

[
f (γ)

] K∑
k=1

αk

pk(γ)
− f (γ)

K∑
k=1

αk

p2
k(γ)

∂

∂γ

[
pk(γ)

]
,

(39)

where pk(γ) and ∂
∂γ

[
pk(γ)

]
are the kth elements of

p(γ) = σ2
(
B +

(
1
γ
+ 1

)
D
)−1

1 (40)

and

∂

∂γ

[
p(γ)

]
= σ2 (γB + (1 + γ) D)−1 D (γB + (1 + γ) D)−1 1.

(41)

For the decorrelator, it is easy to show that the non-
cooperative results are equal to the globally optimal results,
since the users’ achieved SINRs are independent of all the
powers of all interferers.

Finally, for the MMSE receiver, we can apply the results
from Section 4. In a large system, if all users choose their
transmit powers based on the values of h(m( j))

k for m( j) ,
m(k) only through the average of these interference gains
and if we use the assumptions of Section 4, the SINR is
approximated by

γMMSE
k '

pkh(m(k))
k

2

σ2 + 1
N

∑
j,k I(p jh

(m(k))
j

2
, pkh(m(k))

k
2
, γMMSE

k )
.

(42)

Any γk which satisfies ∂γk
∂pk
=
γk
pk

is a solution to (42).
Then the power for user k to achieve the SINR γ∗ is

pMMSE
k =

1

h(m(k))
k

2

γ∗σ2

1 − βγ∗
(
q 1

1+γ∗ + (1 − q)ζ(γ∗)
) , (43)

where ζ(γ) is the mean value of G
H+γG in the network. Equal

received SINRs amongst the users is achieved with mini-
mum power consumption when pkh(m(k))

k
2
= κ(γ) is constant

for all k and

κ(γ) =
γσ2

1 − βγ
(
q 1

1+γ + (1 − q)ζ(γ)
) . (44)

Then, (36) can be expressed as

L
M

R

 K∑
k=1

αkh(m(k))
k

2
 max
γ

f (γ)
κ(γ)
. (45)

The solution to maxγ
f (γ)
κ(γ) must satisfy ∂

∂γ

(
f (γ)
κ(γ)

)
= 0.

Combining this with (44) gives the equation that must be
satisfied by the solution to the maximization problem in
(45):

f (γ) = γ f ′(γ)

1 −
βqγ

(1+γ)2 + β(1 − q)γζ(γ)

1 − βqγ2

(1+γ)2 − β(1 − q)γζ(γ)

 . (46)

If ζ(γ) << 1, then the equation is approximately the
same as in the cellular case [5] with K/N → βq. Then,
the ability to use multiple hops to communicate, and there-
fore reduce transmit power, has similar results to reducing
the system load; furthermore, for a large range of values of
βq, the MMSE target SINRs for the noncooperative game
and for the Pareto-optimal solution are close.

6 Numerical Results

Consider a multi-hop network with K = 100 nodes dis-
tributed randomly in a square 500 meters by 500 meters
surrounding an access point in the center. We use a sim-
ple routing scheme where all nodes transmit to the closest
node that is closer to the access point (or the access point
if that is closest). We assume that each packet contains 100
bits of data and no overhead (L = M = 100); the trans-
mission rate is R = 100 kb/s; the thermal noise power is
σ2 = 5 × 10−16 Watts; the channel gains are distributed
with a Rayleigh distribution with mean 0.3d−2, where d is
the distance between the transmitter and receiver; and the
processing gain is N. We use the same efficiency function
as [5], namely f (γ) = (1 − e−γ)M .

Table 1 shows the average utility for four representative
sets of randomly chosen spreading sequences, one for each
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of N = 50, 100, 200, and 300, comparing the mean utility
under the various power choice method discussed above.
Table 2 shows the target SINRs for the socially optimal re-
sults displayed in Table 1.

MF DE MMSE
N = 50
non-coop. 0 1.198 × 1010

soc. opt. 2.025 × 10−14 1.199 × 1010

N = 100
non-coop. 0 1.095 × 108 1.417 × 1010

soc. opt. 1.050 × 10−4 1.095 × 108 1.417 × 1010

N = 200
non-coop. 0 7.459 × 109 1.476 × 1010

soc. opt. 2.512 × 10−10 7.459 × 109 1.476 × 1010

N = 300
non-coop. 0.2056 1.001 × 1010 1.493 × 1010

soc. opt. 1.351 × 109 1.001 × 1010 1.493 × 1010

Table 1. Mean utilities for four representative
sets of spreading sequences.

N MF DE MMSE
50 0.87 6.39
100 1.31 6.47 6.43
200 0.99 6.47 6.45
300 5.03 6.47 6.46

Table 2. Socially optimal SINRs for the same
four representative sets of spreading se-
quences.

The socially optimally implemented MF receiver per-
forms poorly in heavily-loaded systems, while the non-
cooperative implementation fails to achieve non-zero utility
except in the case with the lightest load. Even in the case
where β = 1/3, the mean utility for the socially optimal MF
receiver is less than a tenth of the MMSE receiver’s mean
utility. Using the DE receiver (for which we require that
K ≥ N), as was noted in Section 5, there is no difference
between the non-cooperative and socially optimal results:
both cases have the same target SINR and thus the same
mean utility. For the MMSE receiver, this difference be-
tween the mean utility in the non-cooperative and socially
optimal implementations is very small. Finally, the DE and
MMSE receivers both significantly outperform the MF re-
ceiver in all four of these cases. There is, however, a price to
pay in using the better-performing receivers: these receivers
require more information at every node as well as signifi-
cantly more computation. These issues will be addressed
further in later research.

7 Conclusion

We have analyzed the cross-layer issue of energy-
efficient communication in multi-hop networks using a
game theoretic method. Focusing on linear receivers, we
have derived the transmit power levels that results in a Nash
equilibrium for multiple receiver designs, showing that at
this equilibrium the users are SINR-balanced. We then gen-
eralized the important asymptotic work of Tse and Hanly
to allow for the case where users and their interferers may
be transmitting to different locations, keeping the cellular
example as a special case. We applied these asymptotic re-
sults, as well as exact results for the MF and DE receivers,
to find the equations for the SINR-balanced Pareto-optimal
solution. We showed that the MMSE receiver is the optimal
receiver and that in many cases the non-cooperative MMSE
receiver results are quite close to the socially optimal re-
sults.
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